
Chapter 9 :

Informatics 

Practices

Class XII ( As per 

CBSE Board)

Business use-
case diagrams 
and practical 

aspects-git,use
case diagram

Visit : python.mykvs.in for regular updates



Business use-case diagrams

Visit : python.mykvs.in for regular updates

Business use case diagram describe how the business

is being used by its customers. Activities that directly

concern the customer.

A use case diagram is a representation of a user's

interaction with the system where relationship is shown

between the user and the different use cases in which

the user is involved.

In UML standard, both business use case as well as

business actor are not defined, so either we need to use

some UML tool supporting those or create our own

business modeling stereotypes.



Business use-case diagrams

Visit : python.mykvs.in for regular updates

What is a Use Case?

• Means ,how a business system interacts with

its environment.

• Represents the activities that are performed

by the users of the system.

What is an Actor?

It is a user or outside system which interacts

with the system being designed in order to

obtain some result from that interaction.



Business use-case diagrams

Visit : python.mykvs.in for regular updates

Use case diagrams shows what a system does from

the view of an external observer. The main focus is on

what a system does rather than how it does.

Use case diagrams are connected to scenarios. A

scenario means what happens when anyone interacts

with the system.

Here is a scenario for a point of sale terminal.

A customer reach to  the shop to purchase an item. 

The cashier/seller take the decision based on the item 

chosen by the customer and deliver that item receive 

money.

We want to write a use case for this scenario.

Step 1 Identify the actors

As we read the scenario, define those people or 

systems that are going to interact with the scenario. 



Business use-case diagrams

Visit : python.mykvs.in for regular updates

Categories of Business Use Cases

Based on the activities in a business there are three 

categories of business use cases:

• First, activities which are commercially important, 

known as business processes.

• Second, activities which are not commercially 

important, but to be performed anyhow to make the 

business work. E.g. security, administration, 

cleaning etc. 

• Third, management work. Type of work that affects 

business use cases management.



Business use-case diagrams

Visit : python.mykvs.in for regular updates

Business Use Cases Always Related to Business 

Actors-

Every business use case should have a relationship to

or from a business actor. If business use-case model

has business use cases which no one requests or use,

it warns that something is wrong with the model.

There are three main reasons for structuring the

business use-case model:

• To make it easier to understand.

• To reuse parts of workflows which are shared

among many business use cases.

• To make easier to maintain.



Business use-case diagrams

Visit : python.mykvs.in for regular updates

Characteristics of a Good Business Use-Case Model

• It must perform all the activities within the business.

• It must conform to the business for which these are 

designed.

• Every activity must be relate to at least one use 

case.

• Should have balance between the number of use 

cases and the size of the use cases:

• Less use cases make the model easier to 

understand where as More use cases may make the 

model difficult to understand.

• Large use cases may be complex and difficult to 

understand.

• Each use case must be unique. 

• It should give a good comprehensive picture of the 

organization.



Business use-case diagrams

Visit : python.mykvs.in for regular updates

Elements in use case diagrams

Actor

An actor represents a role that an outsider

takes on when interacting with the business

system.

Association

It is relationship between an actor

and a business use case association

Business Use Case

It describes the interaction between an actor and a

business system

Subject

It describes a business system that has one or more 

business use cases attached to it.

Business 

use case

Subject



Business use-case diagrams

Visit : python.mykvs.in for regular updates

How to Draw a Use Case Diagram?

Following are the steps to draw use case 

diagram.

• Identify the Actors of the system.

• Identify all roles played by the users relevant 

to the system.

• Identify the users/task required to achieve 

the goals.

• Create use cases for every goal.

• Structure the use cases.

• Prioritize/review/estimate/validate the users.



Business use-case diagrams

Visit : python.mykvs.in for regular updates

Structuring/relationship type of Use Cases

• <<include>> Use Case

The time to use the <<include>> relationship is 

after you have completed the first cut 

description of all your main Use Cases

• <<extend>> Use Case

The <<extend>> use case accomplishes this 

by conceptually inserting additional action 

sequences into the base use-case sequence.

• Abstract and generalized Use Case

The general use case is abstract. It can not be 

instantiated, as it contains incomplete 

information. The title of an abstract use case is 

shown in italics.



Business use-case diagrams

Visit : python.mykvs.in for regular updates

E.g. Use case diagram



Business use-case diagrams

Visit : python.mykvs.in for regular updates

E.g. Use case diagram



Business use-case diagrams

Visit : python.mykvs.in for regular updates

E.g. business use case diagram



Business use-case diagrams

Visit : python.mykvs.in for regular updates

Version control system
Version Control System (VCS) can be considered as a

kind of database. It helps us to save a snapshot of the

complete project at any point of time. Through it

project files can be tracked along with who made the

change and why the changes were made. Later on

when if required to take a look at an older

snapshot/version, VCS shows how exactly it differed

from the previous one.

When our project is tracked by VCS, any

addition/deletion/modification in files of our project

will be automatically detected and recorded by it.

Version Control System also know as:

• Source Control Management System

• Revision Control System

• Configuration Management System



Business use-case diagrams

Visit : python.mykvs.in for regular updates

Features of VCS

• Maintain separate track record for each 

team-members of the project.

• Easy to compare and merge codes of 

different branches.    

• Easy to trace changes in code to find the 

version that introduced a bug 

• Simple to compare versions to resolve 

conflicts in code during merging

• Revert changes made to code to any state 

from its history.



Business use-case diagrams

Visit : python.mykvs.in for regular updates

Top Version Control Systems

• GIT

• CVS

• SVN

• Assembla

• Mercurial

• Bazaar



Global Information Tracker

Visit : python.mykvs.in for regular updates

GIT

Git is currently the most popular distributed version

control system.

It originates from the Linux kernel development and it

was founded in 2005 by Linus Torvalds. Nowadays it is

being used by many popular open source projects,

like,Android,Eclipse developer teams, as well as many

commercial organizations.

Basically it was written in the programming language

C, but later on Git has been re-implemented in other

languages, e.g., Java, Ruby and Python.



Global Information Tracker

Visit : python.mykvs.in for regular updates

Advantages of using GIT

•Performance:Git has good performance among other VCS.
Committing, branching, merging all are optimized for a better
performance than other systems.
•Security: It secure our codes.Git handles security with cryptographic
method SHA-1.
•Branching Model: we can have multiple local branches which are
independent of each other. So there is less friction, context
switching (switch back and forth to new commit, code and back)
•Staging Area: Git has an intermediate stage called as “index” or
“staging area” where commits can be formatted and modified before
completing the commit.
•Distributed: Distributed means that the repository or the complete
code base is mirrored onto the developers system so that he can work
on it only.
•Open Source: Being open source invites the developers from all over
the world to contribute to the software and make it more powerful
Disadvantages of using GIT

• Git is less preferred for handling extremely large files or frequently 
changing binary files .

• GIT does not support ‘commits’ across multiple branches or tags.



Global Information Tracker

Visit : python.mykvs.in for regular updates

Git terminology
Branch – A named pointer to a commit.

Commit - Creates a new commit object in the Git repository.

HEAD - Pointing to the existing checked out branch (selected 

branch)

 Index - Alternative term for the staging area

Repository – It contains the history, the different versions over 

time and all different branches and tags.

Revision - A version of the source code

Staging area - Place to store changes in the working tree 

before the commit

 Tag-Points to a commit that uniquely identifies a version of 

repository

URL-Location of the repository.fetchurl for fetch data from 

other repository and pushurl to push data to other repository

Working tree - Contains the set of working files for the 

repository



Global Information Tracker

Visit : python.mykvs.in for regular updates

https://gitforwindows.org/
https://gitforwindows.org/


Global Information Tracker

Visit : python.mykvs.in for regular updates

Working 

directory

Staging

area

Local 

repository

Remote 

repository

git add

git commit

git push

git pull

git checkout

git pull

How to work in git/working structure of git



Global Information Tracker

Visit : python.mykvs.in for regular updates

Some of the basic operations in Git are:

• Initialize -

• Add

• Commit

• Pull

• Push

Some advanced Git operations are:

• Branching

• Merging

• Rebasing



Global Information Tracker

Visit : python.mykvs.in for regular updates

After installing Git in Windows system, just open folder/directory 

where we want to store all our project files; right click and select 

‘Git Bash here’.

It will open up Git Bash terminal where we can enter commands

to perform various Git operations.



Global Information Tracker

Visit : python.mykvs.in for regular updates

Initialize - git init command creates an empty Git

repository/re-initializes an existing one. It creates a .git

directory with sub directories and template files. 

Type git init in git bash of selected directory.

git status command lists all the modified files which are 

ready to be added to the local repository.

Now type  git status , it will display the existing status.

Now make some changes in the selected directory ,like 

create  a.txt file in it.

Now again type git status, it will display that untracked 

files are there like a.txt.

git add command to add any new or modified files to the 

index. (git add –A to add all the files of current directory)

Now type git add a.txt and then git status, it will display 

changes occurred.



Global Information Tracker

Visit : python.mykvs.in for regular updates

git commit  - It refers to recording snapshots of the 

repository at a given time. git commit always changes 

master points to latest commit.

In above diagram after git commit command master point 

will move to s3 snapshot from s2 snapshot.

s1 s2

Master

s1 s2

Master

s3

git commit



Global Information Tracker

Visit : python.mykvs.in for regular updates

git commit  - before using git commit command please configure git

system first.

like

$ git config --global user.email “abc199@gmail.com"

$ git config --global user.email “abc“

Now apply git commit command like

git commit -m "adding one file"

The above command will commit the changes in one file in the local 

repository.

Before using git pull or push we have to set the central repository using 

command like given below.
$ git remote add origin https://abc.com/a.git

Now type the following command
$ git push origin master

Above command will transfer commits from our local repository to 

remote repository.
$ git pull origin master

It is opposite to git pull command.it will transfer commits of remote 

repository to local repository.

Note – GUI Version of git can also be used

https://abc.com/a.git


Global Information Tracker

Visit : python.mykvs.in for regular updates

Branching

Branches in Git are pointers to a specific commit. Git generally prefers

to keep its branches as lightweight as possible.

There are basically two types of branches viz. local branches and

remote tracking branches.

$ git branch myfirstbranch

The above command creates new branch named “myfirstbranch” and

switched to new branch using below command.

$ git checkout myfirstbranch

Merging

Merging is the way through which we can combine the work of different

branches together.

a

cb

branch1 branch2

a

cb
branch1

branch2

git merge branch1

c

It is important to know

that the branch name

in the git merge

command should be

the branch we want to

merge into the branch

we are currently

checking out. So, make

sure that we are

checked out in the

destination branch.



Use case diagram (as case study of a software system) 

Visit : python.mykvs.in for regular updates

A use case diagram is a representation of a user's 

interaction with the system where relationship is 

shown between the user and the different use cases in 

which the user is involved. 

How to build a Use Case Diagram?

Following are the steps to draw use case diagram.

• Identify the Actors of the system.

• Identify all roles played by the users relevant to the 

system.

• Identify the users/task required to achieve the goals.

• Create use cases for every goal.

• Structure the use cases.

• Prioritize/review/estimate/validate the users.



Visit : python.mykvs.in for regular updates

Components of a Use Case Diagram?

Connector – Role play(system)

real system

use case – Capability

Connector – Interaction

Generalization – further parts of connector

Stereo type – relationship

a. <<include>> It is implicit function ,to use any use 

case/capability we have to go through it.

b. <<extend>> It is explicit function and it is optional. 

means some capability to be used are optional 

Use case diagram (as case study of a software system) 



Visit : python.mykvs.in for regular updates

1. Shopping app use case diagram
Steps
1. First draw actors on left side like 

customer(then generalized with 

member and non member) and seller

2. Then draw use cases like 

order,cancel,return for customer and 

stmt and reports for seller.

3. Assign connector(          ) between 

actor and use cases

4. Make use case login, because 

order,cancel or return is possible after 

login that’s why it is necessary ( so 

mark it as include)

5. Draw discount as extended as it is 

optional.

6. Draw admin as actor and relate with 

login,stmt and reports.

7. Assign system boundary and name it 

as shopping app use case diagram

Note – design of use case diagram 

designed by two or more person may vary, 

because creativity of different person 

varies

Use case diagram (as case study of a software system) 



Visit : python.mykvs.in for regular updates

2.  Banking app use case diagram
Steps
1. First draw customer as actor

2. Then draw use cases open 

accunt,deposit fund,withdraw fund

3. Then connect use cases with customer

4. Then draw use case update bonus as 

<<include>> (because it necessary) 

from deposit fund and withdraw fund 

use cases and calculate bonus as 

optional (<<extend>>)

5. Then draw banker and connect it with 

open account(because for opening an 

account there must be banker

6. Then assign system boundary and 

assign name as bank app use case 

diagram

Note – design of use case diagram 

designed by two or more person may vary, 

because creativity of different person 

varies

Use case diagram (as case study of a software system) 



Visit : python.mykvs.in for regular updates

There are many online website for use case design

 Creately :Online diagramming and collaboration. Several 

modeling languages supported

 Diagram.ly : Simpe and easy

 Draw.io

 Gliffy | Online Diagram and Flowchart Software

 Lucidchart

 Create UML diagrams online

 MxGraph (JavaScript based)

Other than above mentioned ,there are number of

software/tools available on internet(can find through google)

for use case design purpose.

Through little bit effort any one can draw use case design

tool/ software.

Use case diagram (as case study of a software system) 

http://www.diagram.ly/

